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Motivation

Network optimization [Fredman 1976; Gallo, Grgoriadis & Tarjan 1989; . . .]

• standard shortest path optimization requires full information
and primarily addresses individual agents

• parametric weights allow for robust optimization
• particularly relevant for system optimization
• example: interstellar communication

Additional geometric aspects

• Sturmfels & Tran 2013; Tran 2014:
classification of tropical eigenspaces/polytropes/alcoved polytopes
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Our Model

Let Γ = (V ,E ) be a simple directed graph with n nodes
and m = #E arcs.

• m ≤ n2 (again, we might allow loops)

• arc weights wt : E → T[X1, . . . ,Xm]
• tropical polynomials form semiring

Example

(4X⊕3XY 2)⊕(1X⊕(−2)Y 3) = 1X⊕3XY 2⊕(−2)Y 3

(4X ⊕ 3XY 2)⊙ 2Y 4 = 6XY 4 ⊕ 5XY 6
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Parameterized All-Pairs Shortest Paths

Proposition

The solution to the all-pairs shortest paths problem of a directed graph with n nodes and
weighted adjacency matrix

A ∈ T[X1, . . . ,Xk ]

is a polyhedral decomposition of Rk induced by ≤ n2 tropical polynomials corresponding to
the nonconstant coefficients of A⊙(n−1).

On each polyhedral cell the lengths of all shortest paths are linear functions in the k
parameters.
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Example

Consider the directed graph Γ on four nodes with the weighted adjacency matrix

A =


0 ∞ ∞ 1
1 0 ∞ ∞
Y 1 0 ∞
∞ X 1 0

 , (1)

whose coefficients lie in the semiring T[X ,Y ] of bivariate tropical polynomials.
Then

A⊙3 =

(
min(2 + X , 2 + Y , 0) min(1 + X , 3) 2 1

1 min(2 + X , 0) 3 2
min(Y , 2) min(1 + X + Y , 1) min(2 + Y , 0) min(1 + Y , 3)

min(1 + X , 1 + Y , 3) min(X , 2) 1 min(2 + X , 2 + Y , 0)

)
.
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X

Y

0 3 2 1
1 0 3 2
2 1 0 3
3 2 1 0



 0 3 2 1
1 0 3 2
2 1 0 1+Y

1+Y 2 1 0



 0 1+X 2 1
1 0 3 2
2 1 0 3

1+X X 1 0



 0 1+X 2 1
1 0 3 2
Y 1 0 1 + Y

1 + X X 1 0



 0 1+X 2 1
1 0 3 2
Y 1+X+Y 0 1+Y

1+Y X 1 0
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Parameterized Floyd–Warshall Algorithm

Calculate length of shortest path from u to v with all intermediate nodes restricted to
{1, 2, . . . , r}, which is

a
(r)
uv =

{
auv if r = 0

min
(
a
(r−1)
uv , a

(r−1)
ur + a

(r−1)
rv

)
if r ≥ 1 (and comparable) .

(2)

• otherwise: split feasible region, maintaining one copy of a
(r−1)
uv per resulting region

• (T[X1, . . . ,Xk ],⊕,⊙) is a semiring, equipped with partial ordering
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Analysis of Parameterized Floyd–Warshall

Theorem (J. & Schröter 2022)

Let A ∈ T[x1, . . . , xk ]n×n be the weighted adjacency matrix of a directed graph on n nodes.

Suppose that A has separated variables.

Then, between any pair of nodes, there are at most 2k pairwise incomparable shortest paths.
Moreover, the Kleene star A∗, which encodes all parameterized shortest paths, can be
computed in O(max{1, k · 2k} · n3) time, if it exists.

• separated variables: each coefficient of A involves a constant plus at most one of the k
indeterminates, and each such coefficient has its own indeterminate
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Sketch of proof

• Assume no negative cycles.

• Then, at least one shortest path between any two nodes (possibly of infinite length).

• In each shortest path each arc occurs at most once. By our assumption this means that
the total weight is λ+ xi1 + · · ·+ xiℓ for λ ∈ T and xi1 + · · ·+ xiℓ is a multilinear tropical
monomial, i.e., each indeterminate occurs with multiplicity zero or one.
There are 2k distinct multilinear monomials, and hence this bounds the number of
incomparable shortest paths between any two nodes.

• Use Floyd–Warshall on each region.

• The tropical multiplication, i.e., ordinary sum, of two multilinear monomials takes linear
time in the number of indeterminates, which is at most k .
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Aspects concerning shortest paths not mentioned

• weighted digraph polyhedra Q(A) are also tropically convex
• Lam & Postnikov: alcoved polytopes
• J. & Kulas: polytropes
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Software
polymake

• Gawrilow & J. 1997; since then team effort

• polyhedral & tropical geometry; . . .

• “box” version

MatchTheNet

• J., Loho, Lorenz & Raber 2017

• educational game about polytopes

OSCAR

• Decker, Fieker, Horn & J. (with a large team) 2024

• comprehensive new computer algebra system

• ANTIC/Hecke, GAP, polymake, Singular and much more
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Traffic Networks

Each arc (u, v) in Γ is equipped with a weight interval [λuv , µuv ] subject to

0 ≤ λuv ≤ µuv ≤ ∞ .

• if µuv = ∞, then [λuv , µuv ] = {x ∈ R | x ≥ λuv}
• if λuv = µuv = ∞, then [∞,∞] = ∅; i.e., no ar)

• we explicitly allow λuv = µuv , i.e., constant weight

We set the coefficients of A (with separated variables) to:

auv =

{
Xuv if λuv < µuv

λuv otherwise .

• restrict feasible domain to the polyhedron [λ(X1), µ(X1)]× · · · × [λ(Xk), µ(Xk)] in Rk
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Berlin-Mitte-Center Dataset
Jahn et al. 2005: n = 362 nodes, m = 583 arcs, p = 5% variable arc weights
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Berlin-Mitte-Center Dataset, Continued
Jahn et al. 2005: n = 362 nodes, m = 583 arcs
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polymake running times versus number of solutions, both log-scaled.
Left: p = 5% (25 variables). Right: p = 8% (42 variables; one node aborted after a week).
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Interstellar Communication
Cleveland et al. 2022

• Delay Tolerant Networking (DTN) = current standard fornetworking of space systems

• currently: space networks are small with fixed scheduled contact opportunities
• does not scale because developing a schedule requires human interaction

• so they use our approach
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Summary

• parametric shortest paths allows for robust optimization

• incomparabilities lead to polyhedral decomposition into regions

• fixed shortest path tree per region

• Floyd–Warshall and Dijkstra can be suitably modified

Michael Joswig, Essentials of tropical combinatorics, Graduate Studies in Mathematics,
vol. 219, American Mathematical Society, Providence, RI, 2021.

Michael Joswig and Benjamin Schröter, Parametric shortest-path algorithms via tropical
geometry, Math. Oper. Res. 47 (2022), no. 3, 2065–2081.
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