# The Tropical Geometry of Shortest Paths

Part 3: Parametric Shortest Paths

Michael Joswig

TU Berlin

Braunschweig, 28 August 2025

- 1 Shortest Paths
- 2 Tropical Polynomials and Hypersurfaces
- 3 Parametric Shortest Paths
  motivation
  software / experiments
  traffic networks
  interstellar communication

#### Motivation

Network optimization [Fredman 1976; Gallo, Grgoriadis & Tarjan 1989; ...]

- standard shortest path optimization requires full information and primarily addresses individual agents
- parametric weights allow for robust optimization
  - particularly relevant for system optimization
  - example: interstellar communication

#### Additional geometric aspects

 Sturmfels & Tran 2013; Tran 2014: classification of tropical eigenspaces/polytropes/alcoved polytopes

#### Our Model

Let  $\Gamma = (V, E)$  be a simple directed graph with n nodes and m = #E arcs.

- $m \le n^2$  (again, we might allow loops)
- arc weights wt :  $E \to \mathbb{T}[X_1, \dots, X_m]$ 
  - tropical polynomials form semiring

# Example $(4X \oplus 3XY^2) \oplus (1X \oplus (-2)Y^3) = 1X \oplus 3XY^2 \oplus (-2)Y^3$ $(4X \oplus 3XY^2) \odot 2Y^4 = 6XY^4 \oplus 5XY^6$



#### Parameterized All-Pairs Shortest Paths

#### Proposition

The solution to the all-pairs shortest paths problem of a directed graph with n nodes and weighted adjacency matrix

$$A \in \mathbb{T}[X_1, \dots, X_k]$$

is a polyhedral decomposition of  $\mathbb{R}^k$  induced by  $\leq n^2$  tropical polynomials corresponding to the nonconstant coefficients of  $A^{\odot(n-1)}$ .

On each polyhedral cell the lengths of all shortest paths are linear functions in the k parameters.

### Example

Consider the directed graph  $\Gamma$  on four nodes with the weighted adjacency matrix

$$A = \begin{pmatrix} 0 & \infty & \infty & 1 \\ 1 & 0 & \infty & \infty \\ Y & 1 & 0 & \infty \\ \infty & X & 1 & 0 \end{pmatrix} , \tag{1}$$

whose coefficients lie in the semiring  $\mathbb{T}[X, Y]$  of bivariate tropical polynomials.

Then

$$\mathcal{A}^{\odot 3} = \left( \begin{smallmatrix} \min(2+X,2+Y,0) & \min(1+X,3) & 2 & 1 \\ 1 & \min(2+X,0) & 3 & 2 \\ \min(1+X,1+Y,3) & \min(1+X+Y,1) & \min(2+Y,0) & \min(1+Y,3) \\ \min(1+X,1+Y,3) & \min(X,2) & 1 & \min(2+X,2+Y,0) \end{smallmatrix} \right) \; .$$



# Parameterized Floyd-Warshall Algorithm

Calculate length of shortest path from u to v with all intermediate nodes restricted to  $\{1, 2, ..., r\}$ , which is

$$a_{uv}^{(r)} = \begin{cases} a_{uv} & \text{if } r = 0\\ \min\left(a_{uv}^{(r-1)}, a_{ur}^{(r-1)} + a_{rv}^{(r-1)}\right) & \text{if } r \ge 1 \text{ (and comparable)} \end{cases}$$
 (2)

- otherwise: split feasible region, maintaining one copy of  $a_{uv}^{(r-1)}$  per resulting region
- $(\mathbb{T}[X_1,\ldots,X_k],\oplus,\odot)$  is a semiring, equipped with partial ordering

# Analysis of Parameterized Floyd-Warshall

# Theorem (J. & Schröter 2022)

Let  $A \in \mathbb{T}[x_1, \dots, x_k]^{n \times n}$  be the weighted adjacency matrix of a directed graph on n nodes.

Suppose that A has separated variables.

Then, between any pair of nodes, there are at most  $2^k$  pairwise incomparable shortest paths. Moreover, the Kleene star  $A^*$ , which encodes all parameterized shortest paths, can be computed in  $O(\max\{1, k \cdot 2^k\} \cdot n^3)$  time, if it exists.

• separated variables: each coefficient of A involves a constant plus at most one of the k indeterminates, and each such coefficient has its own indeterminate

# Sketch of proof

- Assume no negative cycles.
- Then, at least one shortest path between any two nodes (possibly of infinite length).
- In each shortest path each arc occurs at most once. By our assumption this means that the total weight is  $\lambda + x_{i_1} + \cdots + x_{i_\ell}$  for  $\lambda \in \mathbb{T}$  and  $x_{i_1} + \cdots + x_{i_\ell}$  is a multilinear tropical monomial, i.e., each indeterminate occurs with multiplicity zero or one. There are  $2^k$  distinct multilinear monomials, and hence this bounds the number of incomparable shortest paths between any two nodes.
- Use Floyd–Warshall on each region.
- The tropical multiplication, i.e., ordinary sum, of two multilinear monomials takes linear time in the number of indeterminates, which is at most *k*.

# Aspects concerning shortest paths not mentioned

- weighted digraph polyhedra Q(A) are also tropically convex
  - Lam & Postnikov: alcoved polytopes
  - J. & Kulas: polytropes

#### Software

#### polymake

- Gawrilow & J. 1997; since then team effort
- polyhedral & tropical geometry; . . .
- "box" version

#### MatchTheNet

- J., Loho, Lorenz & Raber 2017
- educational game about polytopes

#### OSCAR

- Decker, Fieker, Horn & J. (with a large team) 2024
- comprehensive new computer algebra system
- ANTIC/Hecke, GAP, polymake, Singular and much more









#### Traffic Networks

Each arc (u, v) in  $\Gamma$  is equipped with a weight interval  $[\lambda_{uv}, \mu_{uv}]$  subject to

$$0 \leq \lambda_{uv} \leq \mu_{uv} \leq \infty$$
 .

- if  $\mu_{uv} = \infty$ , then  $[\lambda_{uv}, \mu_{uv}] = \{x \in \mathbb{R} \mid x \geq \lambda_{uv}\}$
- if  $\lambda_{uv} = \mu_{uv} = \infty$ , then  $[\infty, \infty] = \emptyset$ ; i.e., no ar)
- we explicitly allow  $\lambda_{uv} = \mu_{uv}$ , i.e., constant weight

We set the coefficients of A (with separated variables) to:

$$a_{uv} = \begin{cases} X_{uv} & \text{if } \lambda_{uv} < \mu_{uv} \\ \lambda_{uv} & \text{otherwise} \end{cases}$$

• restrict feasible domain to the polyhedron  $[\lambda(X_1), \mu(X_1)] \times \cdots \times [\lambda(X_k), \mu(X_k)]$  in  $\mathbb{R}^k$ 

### Berlin-Mitte-Center Dataset

Jahn et al. 2005: n = 362 nodes, m = 583 arcs, p = 5% variable arc weights



# Berlin-Mitte-Center Dataset, Continued

Jahn et al. 2005: n = 362 nodes, m = 583 arcs



polymake running times versus number of solutions, both log-scaled. Left: p=5% (25 variables). Right: p=8% (42 variables; one node aborted after a week).

#### Interstellar Communication

Cleveland et al. 2022

- Delay Tolerant Networking (DTN) = current standard fornetworking of space systems
- currently: space networks are small with fixed scheduled contact opportunities
  - does not scale because developing a schedule requires human interaction
- so they use our approach

# Summary

- parametric shortest paths allows for robust optimization
- incomparabilities lead to polyhedral decomposition into regions
- fixed shortest path tree per region
- Floyd-Warshall and Dijkstra can be suitably modified

- Michael Joswig, Essentials of tropical combinatorics, Graduate Studies in Mathematics, vol. 219, American Mathematical Society, Providence, RI, 2021.
- Michael Joswig and Benjamin Schröter, Parametric shortest-path algorithms via tropical geometry, Math. Oper. Res. 47 (2022), no. 3, 2065–2081.