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Tropical Polynomials

We can consider (multivariate) tropical polynomials like

4⊕ 3X ⊕ 4X 2 ⊕ 2XY ⊕ 6Y 2 ⊕ 9
2Y

= min(4, 3 + X , 4 + 2X , 2 + X + Y , 6 + 2Y , 92 + Y ) .

They can be added and multiplied tropically, to obtain another semiring: T[X ,Y ].

• via tropical evaluation a k-variate tropical polynomial F ∈ T[X1, . . . ,Xk ] defines a
(continuous) piecewise linear map from Rk to R
• the dome D(F ) =

{
(x , s) ∈ Rk+1 | s ≤ F (x)

}
is an unbounded polyhedron

• F tropically vanishes at x ∈ Rk :⇐⇒ minimum in evaluation F (x) attained at least twice
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Example: A Univariate Tropical Polynomial
k = 1

F (X ) = (3⊙ X 3)⊕ (1⊙ X 2)⊕ (2⊙ X )⊕ 4

F (1) = min(3 + 3, 1+2 , 2+1 , 4) = 3

(−2,−3)
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Regions of Linearity of (Bivariate) Tropical Polynomials
k = 2
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Definition

The tropical hypersurface T (F ) of a k-variate tropical polynomial F is the set of points
x ∈ Rk where the minimum in the evaluation F (x) is attained at least twice. F tropically
vanishes.
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Tropicalization

The ordinary polynomial

f = t4 + t3x + t4x2 + t2xy + (t6 + 23t7)y2 + t9/2y

in, say C(t)[x , y ], can be tropicalized to

trop(f ) = 4⊕ (3⊙ X )⊕ (4⊙ X⊙2)⊕ (2⊙ X ⊙ Y )⊕ (6⊙ Y⊙2)⊕ (92 ⊙ Y )

= min(4, 3 + X , 4 + 2X , 2 + X + Y , 6 + 2Y , 92 + Y ) ,

where each coefficient c ∈ K = C(t) is mapped to val(c) = lowest degree of t.

Theorem (Einsiedler, Kapranov & Lind 2006)

Let f ∈ K[x1, . . . , xn] and x ∈ Kn with f (x) = 0. Then trop(f ) tropically vanishes at val(x).
Up to passing to the topological closure the converse holds, too.
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The Linear Assignment Problem
k = n2

Problem

Given n soccer players and n positions,
what is the best formation?

matrix of “errors” A = (aij) ∈ Tn×n

A =

0 −1 2
0 −2 −2
0 2 0

 ∈ T3×3

• assignment = choice of coefficients, one per column/row

best = min
ω∈Sym(n)

a1,ω(1) + a2,ω(2) + · · ·+ an,ω(n)

=
⊕

ω∈Sym(n)

a1,ω(1) ⊙ a2,ω(2) ⊙ · · · ⊙ an,ω(n)

Definition (tropical determinant)

tdet = trop(det)
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Bipartite Perfect Matchings

For A = (aij) ∈ Tn×n define undirected bipartite graph

B(A) = (V ,E )

on V = [n] ⊔ [n], where {i , j ′} is an edge if aij ̸=∞.

• matching = collection of edges such that each node is
covered at most once

• matching is perfect ⇐⇒ each node covered exactly once

• linear assignment = minimum weight maximal bipartite
matching
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Hungarian Method
Kuhn 1955

input: matrix A ∈ Tn×n

output: matching in B(A) of minimum weight among all matchings of maximal size
µ← ∅
repeat

Uµ ← nodes in [n] not covered by µ
Wµ ← nodes in [n′] not covered by µ
Bµ ← directed graph with node set [n] ⊔ [n′],
edges with weights induced by A, directed from [n] to [n′],
except for those in µ, which are reversed, with negated weights
if there is a path from Uµ to Wµ in Bµ then

π ← edge set of shortest one among these
µ← µ△ π

until no path from Uµ to Wµ exists in Bµ

return µ
complexity:

n · cost for shortest path
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Example

µ0 = ∅, and hence U0 = {1, 2, 3}, W0 = {1′, 2′, 3′}

1 pick µ1 = {(2, 2′)}, one edge of lowest weight −2
• U1 = {1, 3} and W1 = {1′, 3′}, and edge (2, 2′) is

reversed with negated weight
• directed path (1, 2′), (2′, 2), (2, 3′)

has (minimal) total weight −1 + 2− 2 = −1

2 µ2 = µ1 △ {(1, 2′), (2, 2′), (2, 3′)} = {(1, 2′), (2, 3′)}
• shortest path from U2 = {3} to W2 = {1′}

has single edge (3, 1′)

3 unique minimum weight perfect matching

µ3 = µ2 △ {(3, 1′)} = {(1, 2′), (2, 3′), (3, 1′)}
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Intermediate Complexity Analysis

Complexity of Hungarian method: n · cost for shortest path; i.e., O(n4) with Floyd–Warshall.

• however, Floyd–Warshall solves all-pairs shortest paths, which is more than we need!

Strategy: Dijkstra’s algorithm

• solves single source/target shortest path problem in O(n2) time

• however, requires nonnegative weights!

• address that issue later
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Dijkstra’s Algorithm (1959)

input: nonnegative matrix A ∈ Tn×n and a node t ∈ [n]
output: vector of shortest path weights wt∗(·, t) for Γ(A)

initialize vector p of length n with p(t) = 0 and p(v) =∞ for v ̸= t
U ← [n]
while U contains node with finite p-value do

v ← node in U whose p-value is minimal (and thus finite)
U ← U − v
foreach u ∈ δ−(v) do

λ ← wt(u, v) + p(v)
if λ < p(u) then p(u) ← λ

return p
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Example: Dijkstra’s Shortest-Path Tree
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Final Complexity Analysis

Theorem

Suppose that A ∈ Tn×n is nonnegative.
Then Dijkstra’s algorithm computes one shortest path tree in the digraph Γ(A) to obtain the
(backward) potential A∗(t) = wt∗(·, t) in O(n2) time.

• forward potentials from Dijkstra correspond to rows wt∗(u, ·)
• O(n3) for the entire Kleene star A∗, just like Floyd–Warshall

Theorem

The complexity of computing tdet(A), via the Hungarian method and Dijkstra is O(n3).

What about negative coefficients?
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Dijkstra With a Potential
Now let A ∈ Tn×n be arbitrary, but no negative cycles in Γ = Γ(A).
With p ∈ Q(A) be a finite potential we adjust the weights to

wtp(u, v) := wt(u, v)− p(u) + p(v) . (1)

• wtp nonnegative weights on arcs of Γ

Observation

Any shortest path tree for the adjusted weight function wtp is also a shortest path tree for
the original weight function wt. The adjusted weight function gives the actual distance from
any node, v , to the target, t, in the graph with the original weights by the formula

wt∗(v , t) = wt∗p(v , t) + p(v)− p(t) . (2)
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Further Connections Between Tropical Geometry and Optimization
dramatically incomplete and biased

• Baldwin & Klemperer 2019; Tran & Yu 2019: product-mix auctions
• Crowell & Tran 2016: mechanism design
• J., Klimm & Spitz 2022: revenue maximization

• ordinary polyhedra and linear programs can be tropicalized
• Akian, Gaubert & Gutermann 2012: mean-payoff games
• Allamigeon, Benchimol, Gaubert & J. (2014, 2015, 2018, 2021);

Allamigeon, Gaubert & Vandame (2022): complexity of interior point method

• Lin & Yoshida 2018: tropical Fermat–Weber problems
• J. & Comăneci 2024: asymmetric tropical distance

• Gärtner & Jaggi 2006: tropical support vector machines
• Tang, Wang & Yoshida 2020: application to phylogenetics
• Zhang, Naitzat & Lim 2018; Montúfar, Ren & Zhang 2021: neural networks

• Murota 1996: M-convexity; . . .; Brändén & Huh 2020: Lorentzian polynomials
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Summary

• Ordinary polynomials can be tropicalized.

• Computing a tropical determinant is equivalent to solving a linear assignment problem.

• A k-variate tropical polynomials decomposes Rk into polyhedral regions, via evaluation.

• Dijkstra’a algorithm computes one shortest path tree toward a fixed node in O(n2),
provided that the weights are nonnegative (or a potential is given).
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