Tropical median consensus trees with an introduction to tropical convexity

Michael Joswig

TU Berlin & MPI MiS, Leipzig

Séminaires CMLS-CMAP, École Polytechnique, 06 Nov 2024

joint w/ Andrei Comăneci Lars Kastner Georg Loho Benjamin Schröter and others

Tropical Convexity

max-plus linear algebra regular subdivisions of products of simplices Maslov dequantization applications

2 A Tropical Fermat–Weber Problem an asymmetric distance function

3 Optimal Transport

a dual pair of linear programs application: phylogenetic trees

4 How Good Is This Method?

theoretically computations on actual & synthetic data

Tropical convexity

- $(\mathbb{T},\oplus,\odot) =$ tropical semiring (with respect to max)
 - $\mathbb{T}:=\mathbb{R}\cup\{-\infty\}$, $\oplus:=\mathsf{max}$ and $\odot:=+$
- A set $S \subset \mathbb{R}^n$ is a tropical cone if

 $\lambda \odot x \oplus \mu \odot y \in S$ for all $x, y \in S$ and $\lambda, \mu \in \mathbb{R}$.

• tropical projective torus $\mathbb{R}^n/\mathbb{R}\mathbf{1}$

Definition (Develin & Sturmfels 2004) A set $S' \subset \mathbb{R}^n/\mathbb{R}\mathbf{1}$ is tropically convex if it is the image of a tropical cone under the canonical projection $x \mapsto x + \mathbb{R}\mathbf{1}$.

- tropical polytope = finitely generated tropically convex set
- max-plus linear algebra: Cuninghame-Greene 1979, Gaubert 1992, Baccelli et al. 2002, ...

Michael Joswig (TU Berlin & MPI-MiS)

Tropical line segments Pick $p, q \in \mathbb{R}^d$. Up to relabeling, assume:

$$q_1-p_1 \geq q_2-p_2 \geq \ldots \geq q_d-p_d$$
.

2 - r = (0, -2, -4) p = (0, 3, 1) 0 -1 -2 -3 q = (0, 1, -3)

With $r_i := q_i - p_i$ we have

$$\begin{array}{rcl} (r_1 \odot p) \oplus (0 \odot q) &=& (r_1 + p_1, r_1 + p_2, \dots, r_1 + p_d) \ , \\ (r_2 \odot p) \oplus (0 \odot q) &=& (q_1, r_2 + p_2, r_2 + p_3, \dots, r_2 + p_d) \ , \\ &\vdots &\vdots &\vdots \\ (r_{d-1} \odot p) \oplus (0 \odot q) &=& (q_1, q_2, \dots, q_{d-1}, r_{d-1} + p_d) \ , \\ (r_d \odot p) \oplus (0 \odot q) &=& (q_1, q_2, q_3, \dots, q_d) = q \ . \end{array}$$

Note that $(r_1 + p_1, r_1 + p_2, \ldots, r_1 + p_d) = r_1 \odot p$ equals p in $\mathbb{R}^d / \mathbb{R} \mathbf{1}$.

Proposition

The tropical line segment $tconv(p,q) \subset \mathbb{R}^d/\mathbb{R}\mathbf{1}$ is the union of at most d-1 ordinary line segments.

Michael Joswig (TU Berlin & MPI-MiS)

Max-tropically convex sets in the plane $\mathbb{R}^3/\mathbb{R}\mathbf{1}$

Michael Joswig (TU Berlin & MPI-MiS)

Tropical median consensus trees

Tropical hyperplanes with respect to max and min tropical linear form a on \mathbb{R}^d with

$$a(x) = a_1 \odot x_1 \oplus \cdots \oplus a_d \odot x_d$$

vanishes where the maximum/minimum is attained at least twice

Michael Joswig (TU Berlin & MPI-MiS)

Tropical median consensus trees

The structure theorem of tropical convexity

Let $V \in \mathbb{R}^{d \times n}$.

Theorem (Develin & Sturmfels 2004)

The polyhedral decomposition S_V of R^d/R1, which is formed by the regions of the min-tropical hyperplane arrangement A_V, is dual to the (lower) regular subdivision Σ(V), where V is considered as a height function on the vertices of the ordinary polytope Δ_{d-1} × Δ_{n-1}.

2 The max-tropical polytope tconv(V) agrees with the union of the bounded cells of the polyhedral complex S_V .

- Ardila & Develin 2007, Horn 2012: nonregular subdivisions
- Fink & Rincón 2015, J. & Loho 2016: $V \in \mathbb{T}^{d imes n}$

Example: a max-tropical pentagon (d = 3, n = 5)

$$V = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ -2 & 1 & 4 & 5 & 1 \\ -1 & -3 & 2 & 1 & 1 \end{pmatrix}$$

Michael Joswig (TU Berlin & MPI-MiS)

Tropical median consensus trees

Regular subdivision of $\Delta_{d-1} \times \Delta_{n-1}$ dual to S_V

Consider $V \in \mathbb{R}^{d \times n}$.

- append v_{ij} as additional coordinate to $e_i \times e'_i$
- take ordinary convex hull in (d-1) + (n-1) + 1-space
- project down lower faces
 - polyhedral complex which subdivides $\Delta_{d-1} \times \Delta_{n-1}$

Computational classification

The known numbers of combinatorial types of regular triangulations of $\Delta_{d-1} \times \Delta_{n-1}$, up to Sym $(d) \times$ Sym(n)-symmetry:

$d \setminus n$	2	3	4	5	6	7
2	1	1	1	1	1	1
3		5	35	530	13 621	531 862
4			7 869	7 051 957		

- De Loera 1995: PUNTOS
- Rambau 2002–2020: TOPCOM
- Jordan, J. & Kastner 2018–2024: mptopcom

The fundamental theorem of tropical geometry special case: hyperplane arrangement

The field of complex Puiseux series

$$\mathbb{K} = \mathbb{C}\{\{t\}\} = \left\{\sum_{k=m}^{\infty} a_k \cdot t^{k/N} \mid m \in \mathbb{Z}, N \in \mathbb{N}^{\times}, a_k \in \mathbb{C}\right\}$$

is equipped with a valuation val, mapping to the lowest degree.

Theorem (Kapranov, Einsiedler & Lind 2005) For a Laurent polynomial $f \in \mathbb{K}[x_1^{\pm}, \dots, x_d^{\pm}]$ the tropical hypersurface $\mathcal{T}(\operatorname{trop}(f))$ equals the topological closure of the set $\operatorname{val}(V(f))$ in \mathbb{R}^d . $\operatorname{trop}(f)(X_1, \dots, X_d) = \bigoplus_{u \in \operatorname{supp}(f)} \operatorname{val}(\gamma_u(t)) \odot X_1^{\odot u_1} X_2^{\odot u_2} \dots X_d^{\odot u_d}$

• for f a product of linear forms, the ordinary hypersurface V(f) in $(\mathbb{C}^{\times})^d$ is a hyperplane arrangement

Michael Joswig (TU Berlin & MPI-MiS)

Maslov dequantization (applied to polyhedra) Litvinov & Maslov 1996, Develin & Yu 2007

system of linear inequalities over \mathbb{R} or $\mathbb{R}\{\{t\}\}$:

$$max(X, Y) \le 0$$

1 + X \le max(0, 2 + Y)
1 + Y \le max(0, 3 + X)
X \le 2 + Y

Michael Joswig (TU Berlin & MPI-MiS)

logarithmic: $\log_2(\cdot)$

Tropical median consensus trees

tropical: $\lim_{t\to\infty}\log_t(\cdot)$

Tropical convexity applications I

complexity theory

- Akian, Gaubert, Guterman 2012: feasibility of a tropical linear program equivalent to MEAN-PAYOFF
- Allamigeon, Benchimol, Gaubert & J. 2018: log-barrier interior point methods are not strongly polynomial
- Allamigeon, Gaubert & Vandame 2022: arbitrary self-concordant barrier functions

optimization

- J. & Schröter 2022: parametric shortest path algorithms
 - Cleveland et al. 2022: delay tolerant networks (NASA project)
- Gaubert & Vlassopoulos 2024: large language models

economics

• Shiozawa 2015: Ricardian theory of trade

Michael Joswig (TU Berlin & MPI-MiS)

Tropical convexity applications II

Theorem (Yuster & Yu 2007)
Tropical linear spaces are tropical polytopes in the tropical projective space $\mathbb{TP}^d \supseteq \mathbb{R}^d / \mathbb{R}1$.
Theorem (Speyer 2008)
Uniform tropical linear spaces are equivalent to matroid decompositions of hypersimplices.

- Feichter & Sturmfels 2005; Ardila & Klivans 2006: Bergman fans
- Kapranov 1992; Keel & Tevelev 2006: Chow quotients of Grassmannians
- J., Sturmfels & Yu 2007: Bruhat–Tits buildings of type \widetilde{A}
- Adiprasito, Huh & Katz 2018: Hodge theory for combinatorial geometries

Michael Joswig (TU Berlin & MPI-MiS)

Fermat–Weber sets

The asymmetric tropical distance in $\mathbb{R}^n \mathcal{H}$ is given by

$$\mathsf{dist}_{\triangle}(x,y) = \sum_{i \in [n]} (y_i - x_i) - n \min_{i \in [n]} (y_i - x_i) = \sum_{i \in [n]} (y_i - x_i) + n \max_{i \in [n]} (x_i - y_i) ,$$

where $x, y \in \mathbb{R}^n \mathcal{H}.$

- restrict to $\mathcal{H} = \{x \in \mathbb{R}^n \mid \sum x_i = 0\} \cong \mathbb{R}^n / \mathbb{R}\mathbf{1}$
- Amini & Manjunath 2010: Riemann-Roch for lattices

Now pick finite subset $V \subset \mathcal{H}$.

- Lin & Yoshida 2018: symmetric tropical distance
- Sabol, Barnhill, Yoshida & Miura 2024

Michael Joswig (TU Berlin & MPI-MiS)

Asymmetric tropical Fermat–Weber sets are tropical polytopes

Theorem (Comăneci & J. 2024)

The Fermat–Weber set FW(V) is a max-tropical polytope in \mathcal{H} , and it is contained in the max-tropical polytope tconv(V).

- in fact, FW(V) dual to central cell in $\mathcal{S}(V)$
 - in particular, also a convex polytope in the ordinary sense!
- more information: e.g., sharp upper bound for dim FW(V)
- Cox & Curiel 2023: weighted Fermat-Weber points

Example

five points in the plane $\mathcal{H}\cong \mathbb{R}^3/\mathbb{R} 1$ with a unique Fermat–Webert point

Michael Joswig (TU Berlin & MPI-MiS)

A linear program . . .

Consider $V = \{v_1, v_2, \dots, v_m\} \subset \mathcal{H} = \mathbb{R}^n / \mathbb{R}\mathbf{1}$ finite. Then $x^* \in \mathcal{H}$ lies in FW(V) if and only if x^* minimizes

$$\sum_{i\in [m]} {\sf dist}_{ riangle}({m v}_i, x^st) \ = \ {m n} \cdot \sum_{i\in [m]} \max_{j\in [n]}({m v}_{ij}-x_j^st)$$

Equivalently, (t^*, x^*) is an optimal solution of the LP

$$\begin{array}{ll} \text{minimize} & n \cdot (t_1 + \dots + t_m) \\ \text{subject to} & v_{ij} - x_j \leq t_i \,, \\ & x_1 + \dots + x_n \,=\, 0 \end{array} \text{ for } i \in [m] \text{ and } j \in [n] \eqno(1)$$

Michael Joswig (TU Berlin & MPI-MiS)

Tropical median consensus trees

... and its dual

Again we fix $V = (v_{ij}) \in \mathbb{R}^{m \times n}$. Then the following LP is dual to (1), with dual variables λ and y_{ij} for $i \in [m]$ and $j \in [n]$:

$$\begin{array}{ll} \text{maximize} & \sum_{i \in [m]} \sum_{j \in [n]} v_{ij} \cdot y_{ij} \\ \text{subject to} & \sum_{j \in [n]} y_{ij} = n , \quad \text{for } i \in [m] \\ & \lambda + \sum_{i \in [m]} y_{ij} = 0 , \quad \text{for } j \in [n] \\ & y_{ij} \geq 0 , \quad \text{for } i \in [m] \text{ and } j \in [n] . \end{array}$$

transportation problem

• e.g., Tokuyama & Nakano (1995): $O(n^2 m \log^2 m)$ algorithm, for $m \ge n$

Michael Joswig (TU Berlin & MPI-MiS)

Dissimilarity maps and tree-like metrics

Definition A symmetric $t \times t$ -matrix $D = (\delta_{ii})$ is a dissimilarity map if $\delta_{ii} \geq 0$ and $\delta_{ii} = 0$ for all $i, j \in [t]$. • D pseudometric $\iff \delta_{ik} \leq \delta_{ii} + \delta_{ik}$ for all $i, j, k \in [t]$ • D ultrametric $\iff \delta_{ik} \leq \max(\delta_{ii}, \delta_{ik})$ for all $i, j, k \in [t]$ Theorem (Four-Point-Condition; see, e.g., Dress 1984) A pseudometric D on the set [t] is tree-like if and only if the maximum of the three numbers $\delta_{ii} + \delta_{k\ell}, \quad \delta_{ik} + \delta_{i\ell}, \quad \delta_{i\ell} + \delta_{ik}$ is attained at least twice for all $i, j, k, \ell \in [t]$.

Example: Tree-like metric for t = 8

Michael Joswig (TU Berlin & MPI-MiS)

Tropical median consensus trees

Ultrametric trees in tropical geometry

- Billera, Holmes & Vogtmann 2001: space of equidistant trees \mathcal{T}_t
 - Lin, Sturmfels, Tang & Yoshida 2017: employ tropical convexity
- Ardila & Klivans 2006: D ultrametric $\iff D$ corresponds to a point in the Bergman fan of the complete graph K_t
- Speyer 2008: tropical linear spaces
 - Bergman fans arise as special cases

Michael Joswig (TU Berlin & MPI-MiS)

An (equidistant) consensus tree problem on t = 9 taxa

Michael Joswig (TU Berlin & MPI-MiS)

Tropical median consensus trees

Tropical median consensus trees Corollary (Comăneci & J. 2024) Let $V \subset \mathcal{T}_t$ be finite. Then the max-tropical polytope FW(V) is contained in \mathcal{T}_t . Moreover, any two trees in FW(V) share the same tree topology. Proof. • Ardila & Klivans 2006: T_t tropically convex • analyze covector decomposition S_V [Develin & Sturmfels 2004]

Idea: For a finite set of ultrametrics $V = \{D_1, D_2, \ldots, D_m\} \subset \mathbb{R}^{t \times t}$ pick a suitable point in FW(V) as a consensus tree; e.g., the ordinary average of the tropical vertices.

Example: Apicomplexa gene trees m = 268 trees with n = 8 taxa

Kuo, Wares & Kissinger 2008: trees from 268 orthologous sequences with 8 species of protozoa:

- Babesia bovis (Bb), Cryptosporidium parvum (Cp), Eimeria tenella (Et), Plasmodium falciparum (Pf), Plasmodium vivax (Pv), Theileria annulata (Ta) and Toxoplasma gondii (Tg)
- outgroup: Tetrahymena thermophila (Tt)

Page, Yoshida & Zhang 2020: tropical principal component analysis

• based on symmetric tropical distance

Computing tropical median consensus trees (from random) Löbel, 2004: https://www.zib.de/opt-long_projects/Software/Mcf/

Leaves\Trees	50	100	150	200	250	300
5	0.04	0.06	0.07	0.08	0.09	0.11
10	0.11	0.16	0.23	0.26	0.31	0.36
15	0.33	0.45	0.57	0.69	0.79	0.91
20	0.87	1.08	1.29	1.50	1.70	1.92
25	4.13	16.55	50.81	11.15	3.89	382.89

Table: Timings (in seconds @ quad core Intel Core i5-4590)

Corollary (Comăneci & J. 2024) Let $V \subset \mathcal{T}_n$ be a set of m equidistant trees on n leaves. Then dim FW(V) $\leq \min(n-1, \operatorname{gcd}(m, \binom{n}{2})) - 1$.

Michael Joswig (TU Berlin & MPI-MiS)

Conclusion

tropical median consensus trees are nice:

- fast algorithm via transportation
- regular (in the sense of Bryant, Francis & Steel 2017)
- robust, Pareto and co-Pareto on triplets

Andrei Comăneci and Michael Joswig, Asymmetric tropical distances and power diagrams, Algebr. Comb. **6** (2023).

, Tropical medians by transportation, Math. Program. 205 (2024).

Michael Joswig, Essentials of tropical combinatorics, Graduate Studies in Mathematics, vol. 219, American Mathematical Society, Providence, RI, 2021.

Regular consensus methods

```
Definition (Bryant, Francis & Steel 2017)
  A consensus method c: (T_1, \ldots, T_m) \mapsto T is called regular if the
  following conditions hold:
 (U) c(T, T, ..., T) = T:
(A) c(\ldots, T_i, \ldots, T_i, \ldots) = c(\ldots, T_i, \ldots, T_i, \ldots);
 (N) permuting the taxa in the input trees results in the same
       permutation of the taxa in the consensus.
 U = unanimity, A = anonymity, N = neutrality
 Proposition
  The tropical median consensus method is regular.
Michael Joswig (TU Berlin & MPI-MiS)
                                Tropical median consensus trees
                                                                CMLS-CMAP 06 Nov 2024
```

Rooted triplets

Let $i, j, k \in [n]$ be pairwise distinct taxa in some equidistant tree such that the lowest common ancestor of i and j is a proper descendant of the lowest common ancestor of i, j, and k. Then ij|k form a rooted triplet.

Pareto properties

A consensus method $(D_1, \ldots, D_m) \mapsto D$ is

- Pareto on rooted triplets if $\bigcap_{i \in [m]} r(D_i) \subseteq r(D);$
- co-Pareto on rooted triplets if $r(D) \subseteq \bigcup_{i \in [m]} r(D_i)$.

Proposition

Any tropically convex consensus method is Pareto and co-Pareto on rooted triplets.

