ALGORITHMIC DISCRETE MATHEMATICS III: EXERCISES 5

MICHAEL JOSWIG

Exercise 1. Give an explicit algorithmic formulation of the shadow vertex algorithm.

Exercise 2. Consider the affine halfspace

$$H_n^+ = \left\{ x \in \mathbb{R}^n \mid \sum x_i \le 3/2 \right\}$$

The dwarfed n-cube is the polytope

$$D_n = [0,1]^n \cap H_n^+ .$$

- a. Show that D_n is simple.
- b. How many vertices and facets does D_n have?
- c. Show that each simple *n*-polytope *P* with $f_{n-1}(P) = f_{n-1}(D_n)$ we have

$$f_0(P) \geq f_0(D_n)$$

i.e., D_n has the minimal number of vertices among the simple *n*-polytopes with the same number of facets.

Exercise 3. Describe a fast algorithm for computing the *f*-vector of a simple polytope. What is its complexity?

Let τ be a polygonal curve in \mathbb{R}^n parameterized over an interval [a, b]. Then the *total curvature* $\kappa(\tau, [a, b])$ is defined as the sum of the angles between the consecutive segments of the curve.

Exercise 4. Show that the total curvature of a closed polygonal curve in the plane is an integer multiple of 2π .

Let σ be a twice continuously differentiable curve in \mathbb{R}^n parameterized over the interval [a, b] by arc length. Then the *total curvature* $\kappa(\sigma, [a, b])$ is defined as $\int_a^b \|\sigma''(t)\| dt$.

Exercise 5.

- a. What is the total curvature of the unit circle? How does the curvature of an arbitrary circle depend on the radius?
- b. Compute the total curvature of the plane curve $(t, \sin(t))$ in the interval $[0, 2\pi]$. Do not forget to check the parametrization!
- c. How are the two notions of total curvature, for polygonal and smooth curves, related?

Date: January 31, 2019.