ALGORITHMIC DISCRETE MATHEMATICS III: EXERCISES 3

MICHAEL JOSWIG

Exercise 1. Show that the group $\mathrm{PGL}_{3}(\mathbb{R})$ acts transitively on the set of (not necessarily convex) quadrangles, i.e., quadruples of points in the projective plane $\mathrm{PG}_{2}(\mathbb{R})$ such that no three are collinear. What are the $\mathrm{PGL}_{3}(\mathbb{R})$ orbits on the set of pentagons?

Exercise 2. Construct a triangulation of $\mathrm{PG}_{2}(\mathbb{R})$. That is, construct a finite simplicial complex which is homeomorphic to $\mathrm{PG}_{2}(\mathbb{R})$.

Exercise 3. Consider the 3-dimensional polyhedron P given by the following six linear inequalities:

$$
\begin{aligned}
-2 x_{1}-25 x_{2}+10 x_{3} & \geq-25 \\
25 x_{1}+2 x_{2}+10 x_{3} & \geq 2 \\
-2 x_{1}+25 x_{2}+10 x_{3} & \geq-25 \\
25 x_{1}-2 x_{2}+10 x_{3} & \geq 2 \\
-x_{2}-x_{3} & \geq 0 \\
-x_{2}+x_{3} & \geq-2 .
\end{aligned}
$$

(1) Show that P is bounded, i.e., a polytope, whose vertices are the eight columns of the matrix

$$
\left(\begin{array}{cccccccc}
290 / 359 & 370 / 899 & 2 / 25 & 22 / 25 & 5 / 2 & 25 / 2 & -170 / 359 & 830 / 899 \\
81 / 359 & 621 / 899 & 0 & 0 & 0 & 0 & -621 / 359 & -81 / 899 \\
-637 / 359 & -621 / 899 & 0 & -2 & -2 & 0 & 621 / 359 & -1879 / 899
\end{array}\right) .
$$

(2) Check whether or not P is affinely/projectively/combinatorially equivalent to the 3 -cube $[0,1]^{3}$.

Exercise 4. What is the maximal length of 3-dimensional spindle? Or, equivalently, what is the maximal width of a 3-dimensional prismatoid?

