ALGORITHMIC DISCRETE MATHEMATICS III: EXERCISES 3

MICHAEL JOSWIG

Exercise 1. Show that the group $PGL_3(\mathbb{R})$ acts transitively on the set of (not necessarily convex) quadrangles, i.e., quadruples of points in the projective plane $PG_2(\mathbb{R})$ such that no three are collinear. What are the $PGL_3(\mathbb{R})$ orbits on the set of pentagons?

Exercise 2. Construct a triangulation of $PG_2(\mathbb{R})$. That is, construct a finite simplicial complex which is homeomorphic to $PG_2(\mathbb{R})$.

Exercise 3. Consider the 3-dimensional polyhedron P given by the following six linear inequalities:

$$\begin{array}{l} -2x_1 - 25x_2 + 10x_3 \geq -25\\ 25x_1 + 2x_2 + 10x_3 \geq 2\\ -2x_1 + 25x_2 + 10x_3 \geq -25\\ 25x_1 - 2x_2 + 10x_3 \geq 2\\ -x_2 - x_3 \geq 0\\ -x_2 + x_3 \geq -2 \end{array}$$

(1) Show that P is bounded, i.e., a polytope, whose vertices are the eight columns of the matrix

(290/359	370/899	2/25	22/25	5/2	25/2	-170/359	830/899 \	
81/359	621/899	0	0	0	0	-621/359	-81/899	
(-637/359)	-621/899	0	-2	-2	0	621/359	-1879/899/	

(2) Check whether or not P is affinely/projectively/combinatorially equivalent to the 3-cube $[0, 1]^3$.

Exercise 4. What is the maximal length of 3-dimensional spindle? Or, equivalently, what is the maximal width of a 3-dimensional prismatoid?

Date: December 13, 2018.