ALGORITHMIC DISCRETE MATHEMATICS III: EXERCISES 2

MICHAEL JOSWIG

The moment map is defined as $\mu : \mathbb{R} \to \mathbb{R}^n$, $t \mapsto (t, t^2, \ldots, t^n)$. For $t_1 < t_2 < \cdots < t_k$ and $k \ge n + 1$ this gives rise to the cyclic polytope

 $C_{k,n} := \operatorname{conv} \{ \mu(t_1), \mu(t_2), \dots, \mu(t_k) \}$.

Exercise 1. Show that $C_{k,n}$ is simplicial for all $k \ge n+1$.

Exercise 2.

- (1) Show that the product of two simple polytopes is always simple.
- (2) Are there simplicial polytopes P and Q such that their product $P \times Q$ is simplicial?
- (3) What is the operation on polytopes dual to the product?

The *permutahedron* Π_n is the polytope

 $\Pi_n := \operatorname{conv} \{ (\sigma(1), \sigma(2), \dots, \sigma(n)) \mid \sigma \text{ permutation of } [n] \} .$

Exercise 3. Show that Π_n is a simple polytope of dimension n-1.

Exercise 4. For any polytope $P \subset \mathbb{R}^n$ and any pair of distinct vertices, v and w, there is an (admissible) projective transformation $T \in \operatorname{PGL}_{n+1} \mathbb{R}$ and a linear objective function $c \in \mathbb{R}^n$ such that $v' := T \cdot v$ is the unique minimal vertex of the polytope $T \cdot P$, with respect to c, and $w' := T \cdot w$ is the unique maximal vertex.

Exercise 5. Can you find a simple 4-polytope with nine facets such that the diameter of its graph equals the Hirsch bound 9 - 4 = 5?