ALGORITHMIC DISCRETE MATHEMATICS III: EXERCISES 2

MICHAEL JOSWIG

The moment map is defined as $\mu: \mathbb{R} \rightarrow \mathbb{R}^{n}, t \mapsto\left(t, t^{2}, \ldots, t^{n}\right)$. For $t_{1}<t_{2}<\cdots<t_{k}$ and $k \geq n+1$ this gives rise to the cyclic polytope

$$
C_{k, n}:=\operatorname{conv}\left\{\mu\left(t_{1}\right), \mu\left(t_{2}\right), \ldots, \mu\left(t_{k}\right)\right\}
$$

Exercise 1. Show that $C_{k, n}$ is simplicial for all $k \geq n+1$.

Exercise 2.

(1) Show that the product of two simple polytopes is always simple.
(2) Are there simplicial polytopes P and Q such that their product $P \times Q$ is simplicial?
(3) What is the operation on polytopes dual to the product?

The permutahedron Π_{n} is the polytope

$$
\Pi_{n}:=\operatorname{conv}\{(\sigma(1), \sigma(2), \ldots, \sigma(n)) \mid \sigma \text { permutation of }[n]\} .
$$

Exercise 3. Show that Π_{n} is a simple polytope of dimension $n-1$.
Exercise 4. For any polytope $P \subset \mathbb{R}^{n}$ and any pair of distinct vertices, v and w, there is an (admissible) projective transformation $T \in \mathrm{PGL}_{n+1} \mathbb{R}$ and a linear objective function $c \in \mathbb{R}^{n}$ such that $v^{\prime}:=T \cdot v$ is the unique minimal vertex of the polytope $T \cdot P$, with respect to c, and $w^{\prime}:=T \cdot w$ is the unique maximal vertex.

Exercise 5. Can you find a simple 4-polytope with nine facets such that the diameter of its graph equals the Hirsch bound $9-4=5$?

