Ii Cocking length and the ellipsoid method
(1) For $\alpha=p / q \in \mathbb{Q}$ with ${ }_{10}^{23} 18$
a) let
$p, q \in \mathbb{Z}$ coprinin

$$
\left.\operatorname{six}(\alpha):=1+\left\lceil\log _{2}(|p|+1)\right\rangle+\mid \log _{2}(|q|+1)\right\rceil
$$

Also, for $C=\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \mathbb{Q}^{n}$:

$$
\sin (c):=\mu+\operatorname{site}\left(\gamma_{1}\right)+\ldots+\sin \left(\gamma_{n}\right)
$$

and, for $A=\left(\alpha_{i j}\right) \in \mathbb{Q}$
fir $(A):=m \mu+\sum_{i_{i j}} \operatorname{size}\left(\alpha_{i j}\right)$
Further

$$
\begin{aligned}
& \operatorname{six}(a x \leq \beta):=1+\operatorname{sit}(a)+\operatorname{sit}(\beta) \\
& \sin (A x \leq b):=1+\operatorname{sit}(A)+\operatorname{sit}(b)
\end{aligned}
$$

b) Prop Let $A \in \mathbb{Q}^{u \times n}$ with lite $(A)=\sigma$.

Them side $(\operatorname{der} A)<2 \sigma$.
Proof. Let $A=\left(p_{i j}\left(q_{i j}\right)_{i_{i j}}\right.$ where
Vin$^{\prime}, q_{i j} \in \notin$ capris and $q_{i \eta}>0$.
Further, ut et $A=p / q$ with \ldots

$$
\Rightarrow q \leqslant \prod_{i, j}^{u} q_{i j}<2^{\sigma-1} L^{\text {L }}+\text { whit } / \text { hire }
$$

Also $|\operatorname{arct} A| \leqslant \pi_{i, j}\left(\left|v_{i j}\right|+1\right)$

$$
\begin{aligned}
& \Rightarrow|p|=|\operatorname{der} A| \cdot q \leqslant \prod_{1 \cdot j}\left(\left|p_{i j}\right|+1\right) q_{i j}<2^{\sigma-1} \\
& \Rightarrow \operatorname{site}(\operatorname{der} A) \\
& \left.=1+F \log _{2}(|p|+1)\right]+\left\lceil\log _{2}(|q|+1) \mid<2 \sigma .\right.
\end{aligned}
$$

c) Cor For $A \in G L_{n} Q$ we hare $\operatorname{sith}\left(A^{-1}\right) \in \operatorname{poly}(\operatorname{sice}(A))$
d) Cor $\operatorname{Lat} A \in \mathbb{Q}^{m \times n}$ and $b \in \mathbb{Q}^{m}$. If $A x=b$ has a solution the the is a solutifion $x \in \mathbb{Q}$ "with $\operatorname{side}(x) \in \operatorname{poly}(\operatorname{sice}(A x=b))$
Proof. Assume that A has linearly niselependent rows, and $A=\binom{A_{1}}{A_{2}}$ with A_{1} monhigular. The
$x_{0}=\binom{A_{1}^{-1} b}{0}$ is a solution, and the clan i follows from C).
e) Cor The deu'rid problem "Giver A and b rational, does $\Delta x=b$ have a solution? has a food characteritation

Proof.
If answr ponitive then d) provides a certificate of polyuomial sise. Suppote $A x=b$ does woh have a solution
\Leftrightarrow Ex $\quad b$ with $y A=0$ and $y b=1$ Agai by d) thre is Ruch a y of palynowial fire.
f) Cor Lut $A \in \mathbb{Q}^{m \times n}$ and $b \in \mathbb{Q}^{m}$ such that lach now of $[A B]$ has fise at mom φ. If $A x=b$ has a weution then

$$
\{x \mid A x=b\}=\left\{x_{0}+\lambda_{1} x_{1}+\cdots+\lambda_{A} x_{A} \mid \lambda_{i} \in \mathbb{Q}\right\}
$$

for urtain $x_{0}, x_{1}, \ldots, x_{t} \in \mathbb{Q}^{\mu}$ of fite at mors $4 n^{2} \varphi$.
Prook. By Gramer's vule the Coefricikson $x_{0}, x_{1}, \ldots, x_{t}$ can be de scrited as quoteints of tut de tomiants of [Ab] of order $\leqslant \mu$. Byb) these deter minands have tixe $\leqslant 2 n \varphi \Rightarrow$ each coeth of x_{i} has lite $\leqslant 4 \mu \varphi \Rightarrow \operatorname{site}\left(x_{i}\right) \leqslant 4 u^{2} \varphi$.
(2) a) Gaus elininiation trausforms a given matrix A sibo the standard form $\left[\begin{array}{ll}B & C \\ \sigma & o\end{array}\right]$ where $B n^{\prime}$'s nontrigular upper. Lriangular
by now operations $a_{i, \cdot} \mapsto a_{i, \text {. }}+\lambda a_{j,}$ and porunctation of rows / colunus.
Rem Sonutuis furthr reduction to
$\left[\begin{array}{l}\triangle D_{1} \\ 0\end{array}\right] \quad$ Whor \triangle diaponal matrix
b) Thm. (Edmonds 1967)

For A rational Gaup eleriniation is a polywonial tun alforithm.
Proof. W.l. O. \&. assume that no parrintatious of rows ar columes are meless ans. Polynowially meny arithmutic operatiouss suffice, $O\left(\mathrm{~m}^{3}\right)$ i.e. polynomial in the arithenctic model. the procedeare geverates reatices

$$
\begin{aligned}
& A_{0}:=A, A_{1}, A_{2}, \ldots \text { wher } \gamma_{k}=\left(\delta_{i f}\right) \\
& A_{k}=\left[\begin{array}{ll}
B_{k}^{\prime} C_{k} \\
O & D_{k}
\end{array}\right] \text { where } B_{k} \text { uou. fuifula } \\
& \text { (C) } 2018 \text { Michael Joswig (TU Berlin) }
\end{aligned}
$$

then A_{n+1} obtaied from A_{k} by now opration with vivot elemnt $\delta_{11} \neq 0$ (as we assumuel that no tortuif necesoong) To show: $\operatorname{size}\left(A_{k}\right) \in$ poly sipe (A).
we have

$$
\begin{aligned}
& \text { velection of now / cols } \\
& =\operatorname{det}\left(A_{1}^{1} \ldots, \ldots, k, k+i\right)!\operatorname{det}\left(A 1 \begin{array}{l}
1, \ldots k \\
1, \ldots, k
\end{array}\right) \\
& \underset{\text { Prop.b) }}{\Rightarrow} \operatorname{sitc}\left(f_{i j}\right) \leqslant 4 \operatorname{sitc}(A)
\end{aligned}
$$

Snice each entry of B_{m} and C_{m} have been coethivits of D_{i} for som $j<h$ the clani frelows.
c) Cor the follownig problems are polynomially tolv abce.
i) determinig the vank of a (rational) wetrix
(i) - (1- the vank of a reatrix
iiii) - " - the nivest of a matrix [Rem I
iv) testuig vectors for hiekar nidependence
v) Jolving a Aytran of hirar equations.

