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A6
9 The linear programming problem: find.a strongly-polynomial.time
algorithm which for given matrix A € Rmxn and b € Rm decides whether
there exists x € Rn with Ax = b.

Definition 120.

H A decision problem is a pair P = (X, Y). The elements of X are
called instances of P, the elements-of Y C X are the yes-instances,
those of X \ Y are no-instances.

H An algorithm for a decision problem (X, Y') decides for a given x € X
whether x € Y.

ADM T

What is an efficient algorithm?

» efficient: consider running time

» algorithm: Turing Machine or other formal model of computation

Simplified Definition

An algorithm consists of
» “elementary steps’ like, e.g., variable assignments
» simple arithmetic operations

which only take a constant amount of time. The running time of the
algorithm on a given input is the number of such steps and operations.

Two ways of measuring the running time and the size of the input / of A:

Bit Model Arithmetic Model

Count bit operations; e.g., adding Simple arithmetic operations on
two n-bit numbers takes n(+1) steps; | arbitrary numbers can be
multiplying them takes O(n?) steps. performed in constant time.

Size of input / is the total number of | Size of input / is total number of
bits needed to encode “structure” and | bits needed to encode “structure”
numbers. plus # numbers in the input.
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Polynomial vs. Strongly Polynomial Running Time

Definition 27.

H An algorithm runs in polynomial time if, in the bit model, its
(worst-case) running time is polynomially bounded in the input size.

B An algorithm runs in strongly polynomial time if, in the bit model as
well as in the arithmetic model, its (worst-case) running time is
polynomially bounded in the input size.

Examples:

» Prim’'s and Kruskal's Algorithm as well as the Ford-Bellman Algorithm
and Dijkstra’s Algorithm run in strongly polynomial time.

» The Euclidean Algorithm runs in polynomial time but not in strongly
polynomial time.

Pseudopolynomial Running Time

» In the bit model, we assume that numbers are binary encoded, i.e.,
the encoding of the number n € N needs [log n| + 1 bits.

» Thus, the running time bound O(C n?) of Ford’s Algorithm where
C :=2max,ca |ca| + 1 is not polynomial in the input size.

» |If we assume, however, that numbers are unary encoded, then C n? is
polynomially bounded in the input size.

Definition 28.

An algorithm runs in pseudopolynomial time if, in the bit model with unary
encoding of numbers, its (worst-case) running time is polynomially
bounded in the input size.

Example:
Checking whether a given number a € Z>; is prime by testing for all

1 < b < a whether b divides a is a pseudopolynomial time algorithm.
60
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