polymake 2.12 (and beyond) GTS 2012

Michael Joswig w/ Ewgenij Gawrilow and many others

TU Darmstadt

Chapel Hill, June 19, 2012

The polymake System

software for research in:

- geometric combinatorics: convex polytopes
- algebraic geometry
- linear/combinatorial optimization
- **.**..
- open source, GNU Public License
 - supported platforms: Linux, FreeBSD, MacOS X
 - more than 100,000 uloc (**Perl**, **C++**, C, Java)
- co-authored (since 1996) w/ Ewgenij Gawrilow [now TomTom]
 - contributions by many people

```
www.polymake.org
```

- convex hulls: cdd, lrs, beneath-and-beyond
- Voronoi diagrams, Delone decompositions
- face lattices: Kaibel–Pfetsch (including variations)
- lattice polytopes/toric varieties
- simplicial complexes
 - simplicial (co-)homology, cup- and cap-products
 - Björner-Lutz heuristics to recognize spheres
- tropical geometry
 - tropical polytopes
 - tropical hypersurfaces
- graphs, matroids, ...

- convex hulls: cdd, lrs, beneath-and-beyond
- Voronoi diagrams, Delone decompositions
- face lattices: Kaibel–Pfetsch (including variations)
- lattice polytopes/toric varieties
- simplicial complexes
 - simplicial (co-)homology, cup- and cap-products
 - Björner–Lutz heuristics to recognize spheres
- tropical geometry
 - tropical polytopes
 - tropical hypersurfaces
 - graphs, matroids, ...

- convex hulls: cdd, lrs, beneath-and-beyond
- Voronoi diagrams, Delone decompositions
- face lattices: Kaibel–Pfetsch (including variations)
- lattice polytopes/toric varieties
- simplicial complexes
 - simplicial (co-)homology, cup- and cap-products
 - Björner–Lutz heuristics to recognize spheres
- tropical geometry
 - tropical polytopes
 - tropical hypersurfaces
- graphs, matroids, ...

- convex hulls: cdd, lrs, beneath-and-beyond
- Voronoi diagrams, Delone decompositions
- face lattices: Kaibel–Pfetsch (including variations)
- lattice polytopes/toric varieties
- simplicial complexes
 - simplicial (co-)homology, cup- and cap-products
 - Björner–Lutz heuristics to recognize spheres
- tropical geometry
 - tropical polytopes
 - tropical hypersurfaces
- graphs, matroids, ...

Tutorial

switch to "first steps" of demo

Technical Aspects

(= computation)

■ Hybrid design: Perl (interpreted) and C++ (compiled)

- Perl: Server side (= organization/communication)
- C++: Client side
- Shell type user interface
 - (extension of) Perl as language
- Technical features include:
 - C++ template library
 - extends STL, based on template meta-programming
 - shared memory communication between client/server, transaction safe
 - whole system can be used as a C++ library (since 2.12)
- prototype: pypolymake
- interfaces to polymake in the making:
 - Singular, GAP, Sage

[Burcin Erocal]

Objects and Properties

hierarchy of big object types (modelling mathematical concepts)

- e.g., polytopes, simplicial complexes, graphs, ...
- under control of client/server system
- with templates
- properties as class members (functions or data)
 - strongly typed
 - a type is a built-in Perl type, a C++ class type, or a big object type
 - immutable
- new big object types and properties to a given big object type can be added at will
- big object types grouped into applications (\approx name spaces)

Tutorial

switch back to demo