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Multicriteria Optimization

A multicriteria optimization problem is of the form

min f(x) = (A(x),...,fa(x))

subjectto x &€ X .

e feasible set X, contained in decision space, which may be any set

e jth objective function f; : X — R
e |outcome space Z = f(X) C R

' Def|n|t|on

'A point z € Z is nondominated if there is no point w € Z such that
. w; < z; for all i € [d] and w; < z for at least one ¢ € [d].



A “Fast” Algorithm for Nondominated Points

Let Z C RY be finite, with n nondominated points.

.........................................................

. Theorem (Dachert et al. 2017; J. & Loho 2017+)

' There is an algorithm which returns the set of nondominated points of Z
W/th ©(nl9/2) scalarizations.

e asymptotically worst-case optimal



An Example

2 11

feasible set X = {0,1}3
in the decision space Z3

e outcome space

Z={(-3,2), (-2,3), (-1,4),
(0’0)7 (1’1) ( ,2)}CR2 h=(—

e nondominated points
=(0,0) and h=(-3,2)
d=n=2




Tropical Convexity

T =

(T, @, ®) tropical semiring

C C T9*! tropical cone : <= (ANOx)D(uoy) e C
forall A,y € Tand x,y € C

Gaubert 1992; Allamigeon, Gaubert & Katz 2011:

can be described in terms of finitely many tropical linear inequalities
Develin & Yu 2007; Allamigeon, Benchimol, Gaubert & J. 2015:
tropical cone = ord(ordinary cone over Puiseux series)

Develin & Sturmfels 2004; Fink & Rincén 2015; J. & Loho 2016:
combinatorial description via regular subdivisions of

products of simplices

Tmax = (RU{—00}, max, +) or Tmin = (RU {0}, min, +)



Monomial Tropical Cones

Assume G C T9+1 finite such that 0 contained in the support of each
point. We let

M(G) = |J {xeTat| x0— g < min(y g | j € supp(e) \ {01)}

» Definition (Monomial max-tropical cone)

: M(G) = M(G)NRI+

e M(G) = finite union of min-tropical sectors in R9+1
e also finite intersection of max-tropical halfspaces in RI+1
e but apices may lie in T4 {1\ R9*1

e if G C {0} x NY: integral points in M(G) with zero first coordinate
correspond to monomial ideal generated by G



Key Complementarity Result

Let IN(G) be the closure of the complement
of the max-tropical cone M(G) in R9+1.

'Theorem (J. & Loho 2017+)

- Then W(G) is a min-tropical cone in R+, More precisely, if H is a set
 of max-tropical halfspaces such that H = M(G), then

i V\I(G) = _M(_A) )

' where A C Td+nl is the set of apices of the tropical halfspaces in H.
ln particular, the set AU Emin generates N(G).

- e e e E————————————-



Example: Complementary Pair of Monomial Tropical Cones

a=(0,1,0), b=(0,0,2), c=(0,-3,00) inT>,  and
f=1(0,1,—00), g=(0,0,0), h=(0,-3,2) inT3_

[ ] m( ) =
max-tropical cone
generated by
{7z h—e), —e®)

e WN(a,b,c) =

min-tropical cone

generated by
{a,b,c,e) e}




Computing All Nondominated Points

Input: Outcome space Z C RY, implicitly given by objective function and
a description of feasible set.
Output: The set of nondominated points.
1 A EpinUe®

22 G+ 0

3: Q< Emin

4: while A # Q do

5: pick ain A\ Q

6: g (Z,a)
7: if g # None then

8: A < NEWEXTREMALS(G, A, g)
9: G+ GU{g}
10: else
11: Q«+— Qu{a}
12: end if

13: end while
14: return G



Example: Computing the Nondominated Points

or something slightly more general
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the search region is the
entire space
scalarization: first
nondominated point
description via
max-tropical inequalities
scalarization: next
nondominated point
update max-tropical
inequalities
scalarization: next
nondominated point
update max-tropical
inequalities



Scalarizations to Produce Next Nondominated Point

e-constraint method

o N = some set of nondominated points (maybe empty)
o A" C TYH = set of extremal generators of WN(N')

For a € A" and i € [d] consider

min Z
subject to  z; < a; for all j € supp(a) \ {0,7} . (1)
zeZ

If (1) infeasible then there is no nondominated point in Z N (a — R%).
For w € RY feasible w.r.t. (1) consider

min 27:1 k4
subject to  zx < wy for all k € [d] (2)
zeZ .

Optimal solution of (2) is a new nondominated point in N\ .



An Upper Bound

: Theorem (Allamigeon, Gaubert and Katz 2011)

E The number of extreme rays of a tropical cone in T4t defined as the
\ intersection of n tropical halfspaces is bounded by U(n+ d, d).

st - () () o



Proving That Upper Bound

E Let C be a tropical cone given as the intersection of the tropical
' halfspaces Hi, ..., H,. By Allamigeon et al. 2015, there are halfspaces
'Hy, ... Hyin REERTT with ord(H;) = H;, for j € [n], such that

d
ord ﬁl—ljﬁﬂ{x,-zﬂ} :ﬁHj,
Jj=1 i=1 j=1

and, additionally, the generators of the ordinary cone C = (| H; are

mapped onto the generators of the tropical cone C. The ordinary cone
C has at most n + d facets, and thus the claim follows from McMullen's ;
 upper bound theorem. (s

c



Monomial ldeals

Consider R = K|[x1, ..., x4], where K is any field.

e identify monomial x;*x32 - - - x3? with
lattice point (0, a1, a0, ..., aq) in N1 ¢ R‘;gl

Let M be some set of monomials in R.

e Gordan—Dickson Lemma: M contains unique finite subset
which minimally generates J = (M)

e ~~ extremal generators of the monomial max-tropical cone M(M)
e complementarity of monomial tropical cones
generalizes Alexander duality of monomial ideals
e squarefree case = Alexander duality of finite simplicial complexes



Example: d = 3, “Staircase Diagram”

24

M = {x* y* 2% x3y?z, xy32?, x%yz3}
e Miller & Sturmfels: Combinatorial
X Commutative Algebra, 2005



Example: “Staircase Diagram”

(Artinian) monomial ideal

_ 4 4 4 3.2 3,2 2.3
o M ={x*y* z* x’y°z, xy>z*, x*yz°}

irreducible decomposition

Alexander dual

o I = (x*y*z, x4,
xy?z%, x*y223,
x3y422, x2y3 24,

X3y3z3>



Conclusion

e tropical geometry brings in lots of new tools
to (parts of ) combinatorial optimization

e computing tropical convex hulls

e solves multicriteria optimization problems
e yields the Alexander dual of a monomial ideal
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